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Firsts StepsFirsts Steps

1st “Solar” Vehicle

Sunrise II, Nov. 1975

1st Manned “Solar” Vehicle

Solar Riser, April 1979

1st Manned Solar Vehicle

Gossamer Pinguin, May 1980

André Noth, “History of Solar Flight,” Autonomous System Lab, 
Swiss Federal Institute of Technology, Zürich, July 2008

Crossing the English Channel

Solar Challenger, July 1981

Endurance Record, 2 Weeks Flight

Qinetiq Zephyr, July 2010
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NASA HALEs (High Altitude, Long Endurance)NASA HALEs (High Altitude, Long Endurance)

Pathfinder

1994-1998

70,500 ft, 1998

b = 30m

AR=12

m=250 kg

Centurion

1997-1999

80,000 ft (goal)

b=63m

AR=26

m=860kg

Helios

1999-2003

96,800 ft, 2001

b=75m

AR=31

m=930kg

Dryden Flight Research Center Website, www.nasa.gov [cited: February 2013)

Pathfinder-Plus

1998-2002

80,200 ft, 1998

b = 37m

AR=15

m=315 kg
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Main Design ChallengeMain Design Challenge

Energy Balance

Solar Panels Efficiency

Energy Storage Weight / Volume

Aerodynamics

Structure (Weight)



7
3rd Conference on Propulsion Technologies for Unmanned Aerial Vehicles
January 30, 2014, Technion, Haifa, Israel

Engineering Division
Engineering & Development Group

Main Design ChallengeMain Design Challenge

Energy Balance

Solar Panels Efficiency

Energy Storage Weight / Volume

Aerodynamics

Structure (Weight)

MDO: 
Multidisciplinary 

Design 

Optimization

Solution



8
3rd Conference on Propulsion Technologies for Unmanned Aerial Vehicles
January 30, 2014, Technion, Haifa, Israel

Engineering Division
Engineering & Development Group

Performance, Like Sausages…Performance, Like Sausages…
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Laws, like sausages, cease to inspire respect in proportion as we know how they are made

 (John Godfrey Saxe, 1869)



9
3rd Conference on Propulsion Technologies for Unmanned Aerial Vehicles
January 30, 2014, Technion, Haifa, Israel

Engineering Division
Engineering & Development Group

Analysis ModelAnalysis Model

Solar Radiation Model

Date, Time, Location, Attitude

Aerodynamic Model

Air-Vehicle Geometry

Weight Estimation

Energy Balance

Vehicle 
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Drag 

Polar
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Power
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Flight 
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Solar Radiation ModelSolar Radiation Model

Based on ESDU formulation

Time (date / hour)

Latitude / Longitude

Altitude

Attitude

Engineering Sheet Data Units, "Solar heating: total direct irradiance within the earth’s atmosphere," 

ESDU 69015, September 1975

August 2012 , Israel
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Aerodynamic Drag EstimationAerodynamic Drag Estimation

Lift dependent drag

Only induced

Simple Oswald factor (e = 0.9)

Zero lift drag

Drag bookkeeping

Form-Factor
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Roy T.  Schemensky, “Development of an empirically based computer program to predict the aerodynamics characteristics of aircraft. 

Volume 1, Empirical methods,” Air Force Flight Dynamic Laboratory, AD-780-100, November 1973 
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Weight EstimationWeight Estimation

Weight Bookkeeping

Structure

Propulsion system

Batteries

Solar Panel

Payload

A. Noth, "Design of Solar Powered Airplanes for Continuous Flight," 

Ph.D. Thesis, ETH, Eidgenössische Technische Hochschule Zürich, 

September 2008 

Motor Weight Estimation
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Structure Weight EstimationStructure Weight Estimation
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Mission DefinitionMission Definition

Sunrise

Sunset Sunset

Sunrise

70,000 ft

S.L
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Mathematical Programming FormulationMathematical Programming Formulation
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f(x) – cost function

Vehicle mass

Night time altitude

Payload mass

x – design variables

Wing dimension

Battery mass

g(x) – design constraints

Energy balance
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Numerical Implementation

Matlab & ESTECO modeFrontier environment

Numerical Implementation
Matlab & ESTECO modeFrontier environment
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Design Variables

Cost Function

Night Time Altitude - Maximize

Total Vehicle Mass - Minimize

Design Constraint

Energy balance

Design Case ADesign Case A

100 m10 mWing Span, b

405 Aspect Ratio, AR

70,000 ft50,000 ftMinimum Cruise Altitude

1000 kg10 kgBattery mass, m
Battery

Maximum ValueMinimum ValueDesign Variable
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Design Case A, Pareto FrontDesign Case A, Pareto Front

mPayload = 2 kg
mBattery,kg

b,kg (Diameter)
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Design Case A, Pareto FrontDesign Case A, Pareto Front

mPayload = 2 kg
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Design Case A, Pareto Front DesignsDesign Case A, Pareto Front Designs
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Technology Improvements
Design Case A

Technology Improvements
Design Case A

Two main technologies:

Solar panels efficiency

Nominal 22%, Improved: 40%

Batteries energy density

Nominal 350 W-hr/kgf, Improved: 500 W-hr/kgf
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Technology Improvements
Total Mass

Technology Improvements
Total Mass
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Technology Improvements
Battery Mass

Technology Improvements
Battery Mass
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Design Case BDesign Case B

100 m10 mWing Span, b

255 Aspect Ratio, AR

500 kg10 kgBattery mass, m
Battery

Maximum ValueMinimum ValueDesign Variable

Design Variables

Cost Function

Payload Mass - Maximize

Total Vehicle Mass – Minimize

Two cases

Night time altitude 65 kft

Night time altitude 50 kft

Design Constraint

Energy balance
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Design Case B, Pareto Front DesignsDesign Case B, Pareto Front Designs
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ConclusionsConclusions

Solar UAV design is a MDO problem

Staying aloft ‘forever’ requires very big vehicles

Even for a very modest payload

Low feasibility for constant altitude HALE

Lower night time altitude is required

Crucial importance of improved technologies

Main effort: Energy storage weight and volume

Solar panels efficiency

Structure (Weight)


