



# Solar Based Propulsion System UAV Conceptual Design (\*)

Avi Ayele\*§, Ohad Gur§, and Aviv Rosen\*

\*Technion – Israel Institute of Technology §IAI – Israel Aerospace Industries

<sup>(\*)</sup>Ayele A., Gur O., Rosen A., "Conceptual MDO of solar powered UAV," *53<sup>rd</sup> Israel Annual Conference on Aerospace Sciences,* March 6-7, 2013, Israel

### **Ragone Chart** Curtsey of Lidor A., Weihs D., Sher E.



Lidor A., Weihs D., Sher E., "Alternative Power-Plants for micro aerial vehicles (MAV)," 53<sup>rd</sup> Israel Annual Conference on Aerospace Sciences



### **Ragone Chart** Curtsey of Lidor A., Weihs D., Sher E.



Lidor A., Weihs D., Sher E., "Alternative Power-Plants for micro aerial vehicles (MAV)," 53<sup>rd</sup> Israel Annual Conference on Aerospace Sciences



### **Firsts Steps**



1<sup>st</sup> "Solar" Vehicle Sunrise II, Nov. 1975



1<sup>st</sup> Manned "Solar" Vehicle Solar Riser, April 1979



1<sup>st</sup> Manned Solar Vehicle Gossamer Pinguin, May 1980



Crossing the English Channel Solar Challenger, July 1981



Endurance Record, 2 Weeks Flight Qinetiq Zephyr, July 2010



André Noth, "History of Solar Flight," Autonomous System Lab, Swiss Federal Institute of Technology, Zürich, July 2008 *3rd Conference on Propulsion Technologies for Unmanned Aerial Vehicles* 4 *January 30, 2014, Technion, Haifa, Israel* 

### **NASA HALEs (High Altitude, Long Endurance)**



| Pathfinder      | Pathfinder-Plus | Centurion        | Helios          |
|-----------------|-----------------|------------------|-----------------|
| 1994-1998       | 1998-2002       | 1997-1999        | 1999-2003       |
| 70,500 ft, 1998 | 80,200 ft, 1998 | 80,000 ft (goal) | 96,800 ft, 2001 |
| b = 30m         | b = 37m         | b=63m            | b=75m           |
| AR=12           | AR=15           | AR=26            | AR=31           |
| m=250 kg        | m=315 kg        | m=860kg          | m=930kg         |

Dryden Flight Research Center Website, www.nasa.gov [cited: February 2013)



Technology

Technion 3rd Conference on Propulsion Technologies for Unmanned Aerial Vehicles 5 Israel Institute of January 30, 2014, Technion, Haifa, Israel

# Main Design Challenge

#### Energy Balance

- Solar Panels Efficiency
- Energy Storage Weight / Volume
- Aerodynamics
- Structure (Weight)





**Technion** Israel Institute of January 30, 2014, Technion, Haifa, Israel

# Main Design Challenge

- Energy Balance
  - Solar Panels Efficiency
  - Energy Storage Weight / Volume Solution
- Aerodynamics
- Structure (Weight)

MDO: Multidisciplinary Design Optimization





**Technion** Israel Institute of January 30, 2014, Technion, Haifa, Israel

## Performance, Like Sausages...



Laws, like sausages, cease to inspire respect in proportion as we know how they are made (John Godfrey Saxe, 1869)



### **Analysis Model**



# **Solar Radiation Model**

### Based on ESDU formulation

- Time (date / hour)
- Latitude / Longitude
- Altitude
- Attitude



Engineering Sheet Data Units, "Solar heating: total direct irradiance within the earth's atmosphere," ESDU 69015, September 1975



# **Aerodynamic Drag Estimation**

- Lift dependent drag
  - Only induced
  - Simple Oswald factor (e = 0.9)
- Zero lift drag
  - Drag bookkeeping
  - Form-Factor
  - Interference-Factor



Roy T. Schemensky, "Development of an empirically based computer program to predict the aerodynamics characteristics of aircraft. Volume 1, Empirical methods," Air Force Flight Dynamic Laboratory, AD-780-100, November 1973



*Engineering Division Engineering & Development Group Strate Institute of Technology Strate Institute of Technology Strate Conference on Propulsion Technologies for Unmanned Aerial Vehicles January 30, 2014, Technion, Haifa, Israel* 

$$C_D = C_{D0} + \frac{1}{\pi ARe} C_L^2$$

$$C_{D0-i} = C_{f-i} F F_i I F_i \frac{S_{Wet-i}}{S}$$

# **Weight Estimation**

- Weight Bookkeeping
  - Structure
  - Propulsion system
  - Batteries
  - Solar Panel
  - Payload



A. Noth, "Design of Solar Powered Airplanes for Continuous Flight," Ph.D. Thesis, ETH, Eidgenössische Technische Hochschule Zürich, September 2008



## **Structure Weight Estimation**







**Technion** Israel Institute of January 30, 2014, Technion, Haifa, Israel

## **Mission Definition**





## **Mathematical Programming Formulation**

 $\min_{\mathbf{x}\in\mathfrak{R}^n}\mathbf{f}(\mathbf{x})$ 

*s.t*.

 $\mathbf{g}(\mathbf{x}) \leq 0$ 

- f(x) cost function
  - Vehicle mass
  - Night time altitude
  - Payload mass
- x design variables
  - Wing dimension
  - Battery mass
- $g(\mathbf{x})$  design constraints
  - Energy balance



### **Numerical Implementation**

#### Matlab & ESTECO modeFrontier environment







### Design Variables

| Design Variable             | Minimum Value | Maximum Value |
|-----------------------------|---------------|---------------|
| Battery mass, $m_{Battery}$ | 10 kg         | 1000 kg       |
| Minimum Cruise Altitude     | 50,000 ft     | 70,000 ft     |
| Aspect Ratio, AR            | 5             | 40            |
| Wing Span, <i>b</i>         | 10 m          | 100 m         |

### Cost Function

- Night Time Altitude Maximize
- Total Vehicle Mass Minimize
- Design Constraint
  - Energy balance



## **Design Case A, Pareto Front**

$$m_{Payload} = 2 \text{ kg}$$







## **Design Case A, Pareto Front**



Night Time Altitude, ft



## **Design Case A, Pareto Front Designs**





#### Technology Improvements Design Case A

- Two main technologies:
  - Solar panels efficiency
    - Nominal 22%, Improved: 40%
  - Batteries energy density
    - Nominal 350 W-hr/kgf, Improved: 500 W-hr/kgf





#### **Technology Improvements** Total Mass





**Technion** Israel Institute of January 30, 2014, Technion, Haifa, Israel

#### Technology Improvements Battery Mass





# **Design Case B**

#### **Design Variables**

| Design Variable                           | Minimum Value | Maximum Value |
|-------------------------------------------|---------------|---------------|
| Battery mass, <i>m</i> <sub>Battery</sub> | 10 kg         | 500 kg        |
| Aspect Ratio, AR                          | 5             | 25            |
| Wing Span, b                              | 10 m          | 100 m         |

### **Cost Function**

- Payload Mass Maximize
- Total Vehicle Mass Minimize

Technolo

- Two cases
  - Night time altitude 65 kft
  - Night time altitude 50 kft
- Design Constraint
  - Energy balance

Engineering Division Engineering & Development Group



## **Design Case B, Pareto Front**



## **Design Case B, Pareto Front Designs**



# Conclusions

- Solar UAV design is a MDO problem
- Staying aloft 'forever' requires very big vehicles
  - Even for a very modest payload
- Low feasibility for constant altitude HALE
  - Lower night time altitude is required
- Crucial importance of improved technologies
  - Main effort: Energy storage weight and volume
  - Solar panels efficiency
  - Structure (Weight)

