Two-Stroke SI Engine with Direct Injection of Air-Saturated Fuel

By: Yoav Heichal Aviel Aloni

January 2014

Technion – Israel Institute of Technology Faculty of Mechanical Engineering Center for Research in Energy Engineering and Environmental Conservation Internal Combustion Engine Laboratory

- Aeronautics Defense Systems Ltd. is the manufacturer of the Aerostar tactical UAV system and the Orbiter family of mini-UAV systems
- Aeronautics subsidiary, *Zanzoterra Engines s.r.l.* is producing line of two-strokes UAV engines
- Aeronautics is on the verge of production of new line of modern two- strokes engine with high performance.

Two –Stroke Engines

Advantages:

- Simple and light engine
- High-power to weight ratio
- Cost effective engine
- Disadvantages:
- High specific fuel consumption
- Shorter engine life due to very basic
 Iubrication system (oil is mixed in fuel)
- Very high HC emissions
- Oil burns with fuel carbon residues

Fechnion – Israel Institute of Technolo

Faculty of Mechanical Engineering iter for Research in Energy Engineering and Environmental Conservation

- Two-strokes engines will vanish from our world unless new fuel and lubrication systems configurations will be introduced in their design
 - Fuel system must inject the fuel directly into the combustion chamber
 - Lubrication system must be based on

separation of oil from fuel

Two –Stroke Engines and UAV Systems

- Introduction of direct injection (DI) systems to reduce SFC
- Introduction of separate lubrication systems
- Usage of heavy fuels
 - Military logistics consideration- uniform fuel to all combat vehicles
 - High boiling point allows simple fuel systems for high altitude operation
 - High density fuel, smaller volume of aircraft fuel tanks
 - Less flammable fuel, allows operation of UAS onboard NAVY vessels
- Usage of spark ignition systems (SI) in order to allow engine structure to maintain its light weight construction

Challenges in Implementation of DI ignited by Spark

- Pressure in the combustion chamber is high at the time of injection, requiring high pressure pumps (~100 bar)
- Time to achieve homogenous mixture of fuel and air is short
- Air-fuel mixture around the spark source (spark plug tip) has to be close to stoichiometric value
- Cold engine start is difficult due to low rate evaporation of fuel

The key for successful implementation of DI+SI engine is perfect atomization of the fuel before combustion process starts

Novel Solution for DI SI Engine Construction

- The *Technion* is the inventor of a air saturated fuel system
- High pressure injection system generates fine fuel spray
- When air is dissolved in fuel, part of the air-fuel mixture is formed before fuel is injected into the combustion chamber
- Drop in the pressure of the air saturated fuel during injection causes air bubbles to burst out of the fuel resulting increase of fuel atomization (*Henry's Law*)

Novel Solution for DI SI Engine Construction

- What is the fuel pressure and temperature effects?
- What is the air pressure (before dissolved in fuel) effects?
- What is the length of time of injection period effects?
- How much air can be saturated in fuel?

Optical Methods in Analyzing Test Results

Test have shown that injecting air saturated fuel with access of air (2-phase flow) decrease spray angle formation

Test Results- Fuel Spray Formation

It was found that dissolving air in heavy fuel results in substantial increase of the spray volume under both low and high pressures. This is an evidence of fuel atomization improvement!

Pressure	Fuel without air	Fuel with air dissolved	Pressure	Fuel without air	Fuel with air dissolved
40 bar			80 bar		
60 bar	T		100 bar		

Test Results Obtained from Test Rig

Implementation of Research in Real Engines

Implementation of the Research in Real Engines

Implementation of the Research in Real Engines

Implementation of the Research in Real Engines

Piston with swirl chamber

DI injector

Forced lubrication orifice

Aeronautics

Technion – Israel Institute of Technology Faculty of Mechanical Engineering Center for Research in Energy Engineering and Environmental Conservation Internal Combustion Engine Laboratory

Engine Testing Results

The DFI Z498 engine power under operation with different fuels.

Engine Testing Results

